Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	y	z	U_{eq}
O 1	0.3655 (5)	0.23117 (11)	-0.0704 (5)	0.0534 (10)
O4	-0.1304 (5)	0.16407 (12)	-0.0474 (6)	0.0634(11)
O7	0.0520 (5)	0.36750(11)	-0.0305 (6)	0.0576 (10)
C2	0.3586 (8)	0.1870 (2)	-0.0723 (7)	0.0479 (12)
C3	0.2020(7)	0.1624 (2)	-0.0675 (7)	0.0477 (12)
C4	0.0184 (8)	0.1842 (2)	-0.0567 (7)	0.0474 (12)
C4a	0.0269(7)	0.2319 (2)	-0.0577 (7)	0.0446 (12)
C5	-0.1351 (7)	0.2577 (2)	-0.0514 (8)	0.0504 (13)
C6	-0.1240 (8)	0.3020(2)	-0.0470 (8)	0.0517(13)
C7	0.0550 (8)	0.3232 (2)	-0.0452 (7)	0.0480(12)
C8	0.2163 (7)	0.2988 (2)	-0.0576 (7)	0.0496 (13)
C8a	0.1989(7)	0.2536 (2)	-0.0612 (7)	0.0436 (12)
C9	0.2165 (7)	0.1143 (2)	-0.0643 (8)	0.0504 (13)
C10	0.1701 (8)	0.0900(2)	0.0787 (9)	0.061 (2)
C11	0.1867 (10)	0.0455 (2)	0.0865 (11)	0.074 (2)
C12	0.2501 (10)	0.0234 (2)	-0.0489(12)	0.082(2)
C13	0.2970 (10)	0.0468 (2)	-0.1941 (11)	0.077 (2)
C14	0.2811 (9)	0.0917 (2)	-0.2017(9)	0.064 (2)
C15	0.2343 (8)	0.3925 (2)	-0.0038(9)	0.0551 (14)
C16	0.2521 (10)	0.4022 (2)	-0.2030 (10)	().074 (2)
C17	0.2118 (10)	0.4337 (2)	0.1032 (10)	0.078 (2)
Table 2. Selected geometric parameters (Å, °)				

	0	•	,
01—C2	1.351 (6)	C2—C3	1.341 (6)
Ol—C8a	1.373 (5)	C3—C4	1.473 (7)
O4C4	1.232 (6)	С3—С9	1.476 (7)
07—C7 07—C15	1.361 (6) 1.443 (6)	C4—C4a	1.461 (7)
C2—O1—C8a C7—O7—C15	118.1 (4) 120.2 (4)	C3—C2—O1	126.1 (5)
C2—C3—C9—C10 C2—C3—C9—C14	128.5 (5) -50.2 (7)	C7O7C15C16 C7O7C15C17	86.1 (6)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: FINISH in TEXSAN.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1158). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Acharya, K. R., Puranik, V. G., Tavale S. S. & Guru Row, T. N. (1986). Acta Cryst. C42, 597-599.
- Breton, M. B., Precigoux, G., Courseille, C. & Hospital, M. (1975). Acta Cryst. B31, 921-924.
- Caballero, P. & Smith, C. M. (1986). J. Nat. Prod. 49, 1126-1129.
- Feuer, L., Nógrádi, M., Gottsegen, Á., Vermes, B., Streliszky, J., Wolfner, A., Farkas, L., Antus, S. & Kovács, M. (1971). Ger. Patent 2 125 245; Chem. Abstr. 76, 72407.
- Kaneda, M., Iitaka, Y. & Shibita, S. (1973). Acta Cryst. B29, 2827– 2832.
- Lányi, G., Nógrádi, M., Ecsery-Puskás M. & Hermecz, I. (1995). Acta Pharm. Hung. In the press
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany
- Shoja, M. (1992a). Acta Cryst. C48, 2033-2035.
- Shoja, M. (1992b). Z. Crystallogr. 199, 161-166.
 - Varga, M., Bátori, S. & Hermecz, I. (1995). Acta Pharm. Hung. In the press

Acta Cryst. (1996). C52, 1024-1026

A New Crystalline Form of 1-Phenyl-1,2dicarba-*closo*-dodecaborane(12)

RHODRI LL. THOMAS, GEORGINA M. ROSAIR AND ALAN J. WELCH

Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland. E-mail: cherlt@caledonia. hw.ac.uk

(Received 5 June 1995; accepted 29 August 1995)

Abstract

A new polymorph of the title compound, $C_8H_{16}B_{10}$, is reported. The carborane icosahedron is relatively undistorted, with the phenyl substituent twisted out of the C2—C1—C_{ring} plane by 18.3 (2)°, which is in good agreement with the conformation predicted by molecular-orbital calculations.

Comment

1-Ph-1,2-closo-C₂ $B_{10}H_{11}$ has been known since 1963 (Heyling et al., 1963) and many derivatives of it have been structurally characterized (Clegg et al., 1993; McGrath & Welch, 1995a, b, c, d). Surprisingly, it is only recently that a structural determination of the parent molecule has been reported (Brain et al., 1996). This previous crystal form, which will be denoted as the α form, contained two crystallographically independent molecules, only one of which was sufficiently ordered for all cage atoms to be identified. In the other molecule, the position of atom C2 could not be determined unambiguously. In the new crystalline modification described herein, which will be referred to as the β form, there is only one molecule in the asymmetric unit and the cage C atom bearing the H atom is easily identified. All reference to the molecular parameters of the α form are to those of the ordered molecule. The determination of the β form, (I), proved to be more precise than that of the α form, with typical e.s.d.'s being one third of the values reported previously, presumably due in part to the greater order found in the present determination.

The numbering scheme adopted for this molecule is shown in Fig. 1. This is similar to that used for many phenyl-substituted carboranes (McGrath & Welch, 1995a, b, c, d; Brain et al., 1996), with the cage C atom bearing the phenyl substituent being labelled C1. The compound crystallizes with no close intermolecular contacts.

Fig. 1. Perspective view of one molecule of the β form of 1-Ph-1,2-closo-C₂B₁₀H₁₁. Displacement ellipsoids are shown at 50% probability levels and H atoms are drawn as small circles of artificial radii for clarity.

In considering the structures of C-phenyl carboranes, it is convenient to discuss the conformation of the ring relative to the cage in terms of θ (Cowie, Reid, Watmough & Welch, 1994), the modulus of the average of the two C2---C1---Cl1---Cring torsion angles. Ab initio calculations have predicted that the optimum θ angle for this molecule would be 65° (Brain et al., 1996). The value of θ calculated from this structure is $71.7(2)^{\circ}$, which is in excellent agreement with the ab *initio* value and only slightly greater than that found in the α form [68.6 (4)°].

Comparison of the other molecular parameters derived for the structure of the monophenylcarborane in its two crystalline forms shows no other significant differences in their values, except for a slight lengthening of the C1—B6 and C2—B3 distances of the β form relative to those of the α form.

In conclusion, this new crystalline form of 1-Ph-1,2-closo-C₂B₁₀H₁₁ shows excellent agreement with the theoretical conformation. This precise determination makes a good reference for comparison of carboranes in the series 1-Ph-2-R-C₂B₁₀H₁₀, with various different θ angles, where R is small, e.g. R = Me (McGrath & Welch, 1995a) and Br (McGrath & Welch, 1995b).

Experimental

The title compound was synthesized in good yield according to the method of Brain et al. (1996). Analytically pure crystals suitable for X-ray diffraction were grown by slow evaporation of a methanol solution at room temperature.

Crystal data

$C_8H_{16}B_{10}$	Mo $K\alpha$ radiation
$M_r = 220.32$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 250
$P2_1/c$	reflections
a = 7.0250 (14) Å	$\theta = 2 - 20^{\circ}$
b = 8.408(2) Å	$\mu = 0.052 \text{ mm}^{-1}$
c = 21.890(4) Å	T = 150(2) K
$\beta = 97.89(3)^{\circ}$	Plate
$V = 1280.7 (4) \text{ Å}^3$	$0.36 \times 0.20 \times 0.18$ mm
Z = 4	Colourless
$D_{\rm r} = 1.143 {\rm Mg m}^{-3}$	
D_m not measured	

Data collection

Enraf-Nonius FAST diffractometer MADNES (Pflugrath & Messerschmidt, 1991) Absorption correction: none 5323 measured reflections 1964 independent reflections

Refinement

Refinement on F^2 R(F) = 0.0544 $wR(F^2) = 0.1431$ S = 1.0311964 reflections 227 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.1092P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $\theta_{\rm max} = 24.89^{\circ}$ $h = -7 \rightarrow 8$ $k = -7 \rightarrow 9$ $l = -23 \rightarrow 23$

1677 observed reflections

 $[I > 2\sigma(I)]$

 $R_{\rm int} = 0.0521$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.348 \ {
m e} \ {
m \AA}$ $\Delta \rho_{\rm min} = -0.304 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4

Table	1.	Fractional	atomic	coor	rdinates	and e	quivalent
		isotropic di	splacem	ent p	paramete	rs (Ų)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
C1	0.1711(2)	0.3010(2)	0.12266 (6)	0.0211 (4)
C2	0.3552(2)	0.2692 (2)	0.17657 (7)	0.0252 (4)
B3	0.3993 (2)	0.2763 (2)	0.10132 (8)	0.0278 (5)
B4	0.2406 (2)	0.4270 (2)	0.06767 (8)	0.0268 (5)
B5	0.1017(2)	0.4964 (2)	0.12460 (8)	0.0256 (4)
B6	0.1730(2)	0.3905 (2)	0.19423 (8)	0.0255 (4)
B7	0.5585(2)	0.3640(2)	0.16229 (8)	0.0290 (5)
B8	0.4873 (2)	0.4708 (2)	0.09312 (8)	0.0306 (5)
B9	0.3039(2)	0.6079(2)	0.10756 (8)	0.0308 (5)
B10	0.2615(2)	0.5844 (2)	0.18573 (8)	0.0288 (5)
B11	0.4200 (3)	0.4335 (2)	0.21946 (8)	0.0278 (5)
B12	0.5005 (3)	0.5686(2)	0.16614 (8)	0.0285 (5)
C11	0.0288 (2)	0.1680(2)	0.10596 (6)	0.0223 (4)
C12	0.0168 (2)	0.0389 (2)	0.14551 (8)	0.0336 (4)
C13	-0.1132 (2)	-0.0831(2)	0.12821 (8)	0.0366 (5)
C14	-0.2325 (2)	-0.0777 (2)	0.07242 (8)	0.0328 (4)
C15	-0.2224 (2)	0.0511(2)	0.03389 (8)	0.0327 (4)
C16	-0.0930 (2)	0.1739(2)	0.05060(7)	0.0280 (4)

Table 2. Selected geometric parameters (Å, °)

CL CU	1 511 (2)	R6-R10	1 761 (2)
	1.511(2) 1.640(2)	B0B10 B6 B11	1.704(2)
CI = C2	1.049(2)	D7 D0	1.704(2)
	1.710(2)		1.772(3)
CI-B4	1.724 (2)	B7—B12	1.775 (3)
CI-B6	1.736(2)	B/—B11	1.786 (3)
CI-B3	1.742(2)	B8—B9	1.789 (3)
C2—B11	1.698 (2)	B8—B12	1.789 (2)
C2—B7	1.701 (2)	B9—B12	1.782 (3)
C2—B3	1.718 (2)	B9—B10	1.788 (3)
C2—B6	1.722 (2)	B10—B11	1.780(3)
B3—B8	1.766 (3)	B10—B12	1.794 (3)
B3—B4	1.779 (2)	B11-B12	1.776 (2)
B3—B7	1.780(2)	C11—C16	1.385 (2)
B4B9	1.780(2)	C11-C12	1.398 (2)
B4B5	1.783 (3)	C12-C13	1.391 (2)
B4B8	1.785 (2)	C13—C14	1.384 (2)
B5—B6	1.777 (2)	C14-C15	1.380(2)
B5—B9	1.784 (2)	C15-C16	1.391 (2)
B5B10	1.785 (2)	0.0 0.0	
20 210			
C11-C1-C2	118.76 (12)	B10—B6—B11	60.22 (9)
C11—C1—B5	122.26 (12)	B8B7B12	60.60(10)
C11—C1—B4	121.82 (12)	С2—В7—В3	59.11 (9)
B5C1B4	62.45 (9)	B8—B7—B3	59.63 (10)
C11—C1—B6	117.52 (11)	C2—B7—B11	58.20 (9)
C2C1B6	61.07 (9)	B12-B7-B11	59.87 (10)
B5C1B6	61.95 (9)	B3—B8—B7	60.39 (10)
C11-C1B3	116.70(11)	B3—B8—B4	60.14 (9)
C2-C1-B3	60.81 (9)	B4—B8—B9	59.75 (10)
B4—C1—B3	61.77 (10)	B7—B8—B12	59.72 (10)
B11-C2-B7	63.39 (10)	B9B8B12	59.74 (10)
C1-C2-B3	62.29 (9)	B4—B9—B5	60.06 (10)
B7—C2—B3	62.72 (10)	B12—B9—B10	60.35 (10)
C1 - C2 - B6	61.98 (9)	B5-B9-B10	59.98 (10)
B11-C2-B6	62.90 (10)	B4—B9—B8	60.01 (10)
$C^2 - B^3 - C^1$	56.90 (9)	B12—B9—B8	60.13(10)
C1-B3-B4	58.60 (9)	B6-B10-B11	60.44 (9)
B8—B3—B4	60.44 (10)	B6B10B5	60.08 (9)
$C^{2}-B^{3}-B^{7}$	58 17 (9)	B5-B10-B9	59.90(10)
B8—B3—B7	59.98 (10)	BU-BI0-B12	59 58 (9)
C1 - B4 - B3	59.63 (9)	B9B10B12	59.66 (10)
C1	58 57 (9)	B12B11B10	60.60(10)
B9B4B5	60.08 (10)	C^2 _BII_B6	59 20 (9)
B3B4B8	59.42 (10)	B10 B11 B6	59.34(10)
	59.42 (10) 60.25 (10)		58.41.(0)
C1B6	50.23(10)	B12_B11_B7	50.41 (7)
$C_1 = D_2 = D_0$	59.08 (0)	D12-D11-D7	60.42 (10)
D4 D5 D0	50.20 (2)	DI-DI2-DII DI DI2 D0	50.62 (10)
D4-DJ-D7 D4 D5 D10	50.27(10)	D/-D12-D0 D0 D12 D9	59.08 (10) 60.12 (11)
D0-B3-B10	39.37 (10)		00.13 (11)
RA-R2-R10	00.12(10)	B11-B12-B10	59.82 (10)

C2-B6-C1	56.95 (9)	B9-B12-B10	59.99 (10)
C1-B6-B5	58.47 (9)	C16-C11-C1	119.60(13)
B10—B6—B5	60.54 (10)	C12C11C1	121.26 (14)
C2-B6-B11	57.89 (9)		

Intensity data were collected assuming a triclinic unit cell. With a detector-to-crystal (DET) setting of 50.28 mm and a swing angle (θ_D) of -19.9° , reflections were found in two 5° ω -rotation regions separated by 90°. The orientation matrix and unit-cell dimensions were determined by MADNES software (Pflugrath & Messerschmidt, 1991) using 50 reflections taken from these regions. Accurate values of DET (49.410 mm) and θ_D (-19.973°) were determined, along with improved cell dimensions, using 250 high-angle reflections from the two regions. The refined mosaic spread was 0.754°. Unit-cell refinement was subsequently performed at ω -rotation intervals of 15° during data collection. Intensity data corresponding to slightly more than one hemisphere of reciprocal space were recorded using two ω -scan regions of 99.8°, with a φ shift of 90° at $\chi = 90^{\circ}$, to record the missing cusp data. Throughout data collection, the ω increment for each frame was 0.20° and the measuring time was 8 s, with a total data collection time of 6.5 h. No significant decay of intensity levels was observed throughout the experiment.

Data collection: MADNES. Cell refinement: MADNES. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1994).

We thank Heriot-Watt University for provision of a studentship (RLT), the Callery Chemical Company for a generous gift of B₁₀H₁₄, and the EPSRC X-ray diffraction service at the University of Wales, Cardiff, for collection of the data.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1287). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Brain, P. T., Cowie, J., Donohoe, D. J., Hnyk, D., Rankin, D. W. H., Reed, D., Reid, B. D., Robertson, H. E., Welch, A. J., Hofmann, M. & von R. Schleyer, P. (1996). Inorg. Chem. In the press.
- Clegg, W., Coult, R., Fox, M. A., Gill, W. R., MacBride, J. A. H. & 2 (10) Wade, K. (1993). Polyhedron, 12, 2711-2717. 4 (10)
- 6(10) Cowie, J., Reid, B. D., Watmough, J. M. S. & Welch, A. J. (1994). J. 5 (10) Organomet. Chem. 481, 283-293.
- Heyling, T. L., Ager, J. W., Clark, S. L., Mangold, D. J., Goldstien, (10)H. L., Hillman, M., Polak, R. J. & Szymanski, J. W. (1963). Inorg. Chem. 2, 1089-1092.
 - McGrath, T. D. & Welch, A. J. (1995a). Acta Cryst. C51, 646-649.
- McGrath, T. D. & Welch, A. J. (1995b). Acta Cryst. C51, 649-651. 0(10)
 - McGrath, T. D. & Welch, A. J. (1995c). Acta Cryst. C51, 651-654.
- McGrath, T. D. & Welch, A. J. (1995d). Acta Cryst. C51, 654-657. 6(10)
 - Pflugrath, J. W. & Messerschmidt, A. (1991). MADNES. Munich Area Detector (New EEC) System. Small Molecule Version EEC 11/09/89. Enraf-Nonius, Delft, The Netherlands.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473. (10)
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of 2(10)Crystal Structures. University of Göttingen, Germany. 8 (10)
- Sheldrick, G. M. (1994). SHELXTL/PC. Siemens Analytical X-ray 3(11) 2 (10) Instruments Inc., Madison, Wisconsin, USA.